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1. INTRODUCTION

Our research has been progressing in two directions:

1) A traveling wave approach directed to furthering the

results as in e.g., [10], [11], [12]. In particular, we have

concentrated on the problem of identification of dominant modes of

vibrations (dominant traveling wave frequencies) [8]. In [8], we

have established an analogy between vibrations traveling along a

flexible structure and signal returns from targets to an array of

sensors.
2

2) H /H theory of infinite dimensional systems along the

lines of the results we had established in [1-3].

Our work in both of these is still in progress, and will

continue. These are described in more detail in Sections 2 and 3,

respectively.

--



2. CONTROL OF FLEXIBLE LARGE SPACE STRUCTURES

As it is evidenced in many recent publications on the subject

(e.g., many papers in several sessions of recent conferences), the

main theme of research is on Identification and Control of

finitely many dominant modes of vibrations, using finite dimen-

sional compensators. Whether this be in State-Space form or in

Frequency Domain (e.g., considering those structures whose

transfer matrices fall into the Callier-Desoer Algebra), it

requires the modeling of a finite number of the (infinitely many)

modes of vibrations, and thus involves an approximation of

Hyperbolic Partial Differential equations (see, e.g., [10]). The

modes to be modeled for control must satisfy the differential

equation describing the structure. A common procedure for this is

to consider hyperbolic differential equations of the form

2
a u(t,x) au(t,x)

(2) + A + A (x)u(t,x) = f(x,t)2 1 at2
at

where A (x) is a partial differential operator in x (usually the2

second or the fourth order). Using an orthonormal set of

functions O(x) which are the eigenfunctions of A (x), (1) can2
be decoupled into an infinite set of ordinary differential

equations for the (temporal oscillation) modes of (1), each

associated with one of 4(x) (that describes the spatial amplitude

distribution of the mode) (See e.g., [4], [9)). Among these

infinitely many modes, using a finite dimensional compensator, we

can only control a finite number of ones.

-2-



These can be then described in the usual state-space form as

(2) X=Fx + Gu

(3) y= Hx + v + v.
1

In (2), F describes the dominant modes of vibrations we wish

to control, G describes the distribution of control inputs, and

u is the control input. It is important to note here that in our

approach to identification of the dominant modes, we do not need

to assume any a priori knowledge of the frequencies of vibration.

In (3) y is the total of the measurements from the struc-

ture; v is the measurement noise; H describes the distribution of

the sensors, and v describes the effect of the modes that are not1

modeled in F.

The problems that are being considered are

i) identification of the dominant modes (i.e., the unknown

F),
ii) choosing the right sensor structure and then identifi-

cation of H,

iii) choosing the right distribution of actuators (determina-

tion of G)

iv) finding the right controller structure to provile enough

damping to the dominant vibrations despite

a) the measurement noise v,

b) the unmodeled modes v

Particularly important is the consideration of v as it has

been shown that it can cause instabilities ([4]). This is refer-

red to as Spillover. The noise v can be handled considerably by

usual stochastic control techniques.

-3-



It appears that certain system identification/signal process-

ing techniques have already been studied for applicability to this

problem. For example, ARMA models and their identification [5,7],

frequency filtering for spectral decomposition via Discrete Four-

ier Transform [5], and for isolation of the control input from v1

(to prevent spillover) [4]. It is recognized that [5], the domi-

nant modes must be identified on-line. Certain such techniques

have already been in use in approximation of partial differential

equations for a long time [10].

We have recently concentrated on System Identification,

Frequency Filtering and finding the right location of the sensors

for this purpose. We have established (see [8], Appendix A) an

analogy with arrays of sensors used for target signal returns

(especially those for Radars). As a consequence, we have

developed several new results in ([8], Appendix A). It turns out

that suitable location of sensors can be helpful simultaneously

for identification of the dominant modes as well as in isolation

(filtering) of the unmodeled modes from the output to prevent the

Spillover. These are described in some detail in [8] (Appendix A,

Section 5).

i) The system identification problem we have considered in

[8] (Appendix A) is for systems with zero inputs. We have been

working on extending these techniques to systems with possibly

nonzero inputs, and to time-varying systems.

ii) We have been investigating the Toeplitz (and related)

matrices that arise in the covariances in our technique. This

-4-



would enable us to approximate the dominant modes among infinitely

many modes of vibrations in a more effective way.

iii) We have been investigating the dualization of the results

on sensor location to actuator locations for use in disturbance

cancelling, and extension of our system identification techniques

to control of flexible structures.

Our approach here has been traveling wave modeling of the

vibrations, and the analogy we have established with arrays of

sensors arising in target signal returns, taking into consider-

ation in full the structure of the partial differential equations

that arise. This, in fact, appears to be a very general approach

to systems described via partial differential equations (see,

e.g., (12]).

-5-



2
3. H /H THEORY OF INFINITE DIMENSIONAL SYSTEMS

The problem we have been working on is the following.

Let G be a semi-infinite matrix whose columns are in 2
2

Let F be linear operator on 2 . Consider the sequence
2

2 k
(G, FG, F G,....) = (F G)

Now consider a generalized Gram-Schmidt process whereby we

consider the orthogonal direct sums

k-i
X =lmG + lmFG + ... + lmF G
k

Y Y D .... Y
0 1 k-i

where the subspaces Y are mutually orthogonal. This is similar
J

to the idea of a Lancoz Sequence where for a finite vector x and a

finite matrix A, the sequence

2
{x, Ax, A x,....

is orthogonalized via Gram-Schmidt. In this case, the orthogonal

k k-i
projection of A to the space spanned by (x, Ax. ...., A

x x

can be recursively obtained. This is related to orthogonal poly-

nomials (Lancoz polynomials).

A similar technique has been obtained in [7] in the 2 case2

when F is the shift operator.

We are working on extension of this to operators (F,G) where

(F,G,H) is the realization [1] of a transfer matrix

-6-



-1 -1
H = Q R = P Q1 1

where Q, R, P Q are H matrices Q, Q being admissible [1].

1 1 1

Such an extension applied to the reachability map [G,FG,....]

yields a finite dimensional approximation to H. One can recur-

sively obtain higher order approximations. This would also have

application to Least squares identification of a linear system,

and is also related to Lattice filters. This research is

presently continuing.
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ABSTRACT

In this paper, we give a new extended anr3 unifying system

identification technique for a class of systems that include all

main signal models that arise in the Harmonic Decomposition

Problem. This technique unifies and extends the previously

developed system identification techniques which are improvements

on the PISARENKO (MUSIC, dually) Harmonic Decomposition as they

arise in arrays of sensors. The advantages of the technique and

some of its specializations given here include having no

assumptions of stationarity on the stochastic processes involved.

Another contribution of this technique is to show that it can also

be used without any resort to probability theoretic concepts, thus

bypassing the approximation of autocorrelations via time averages,

yielding the system parameters exactly. This technique can

be utilized to determine the dominant modes of vibrations of

flexible structures as well. An analogy is established between

arrays of sensors for target signal returns and those that can be

used for vibrations in flexible structures.
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1. INTRODUCTION

In this paper, we establish a new extended and unifying sys-

tem identification technique for a class of systems that include

all basic signal models that arise in the Harmonic Decomposition

Problem.

The problem considered is the following:

Given the system model

n
x = Fx, x(O) E Rt+l

(1)
yt = Hxt + vt, t = 0, 1, 2,...

and the output sequence y 0 y M; determine H and F.

Here x E R , and y tE R . v is the measurement noise, witht t t

E (vt v T) = Rt. The only assumption on (v t} is that it should

decorrelate after a finite time a > 1 (this assumption is also

used in [3]). This signal model includes most of the signals

arising in the Harmonic Decomposition Problem (e.g., determining

the frequency spectrum of a given signal, as in arrays of sensors,

or as in vibrations arising in certain flexible structures

possibly with some damping).

In Sections 2 and 3, we develop our general system

identification technique. In Sections 4 and 5, we describe the

applications to two important situations: i) Arrays of Sensors,

ii) Vibrations arising in Flexible Space Structures. Also, we

compare our technique to previously developed techniques such as

MUSIC, PISARENKO HARMONTC DECOMPOSITION, and their previous

-11-



extensions that can be found in the literature (See e.g., [2,3]

and the references there). The advantages of the technique and

some of its specializations given here include having no

assumptions of stationarity on the stochastic processes involved.

Another contribution of this technique is to show that it can also

be used without any resort to probability theoretic concepts,

bypassing the approximation of autocorrelations via time averages.

Thus it yields the system parameters exactly.

2. IDENTIFICATION FROM OUTPUT COVARIANCES (PROBABILISTIC APPROACH)

Consider

yt

(2)

Y t+N

and

Y t-N-a

yt-a

corresponding to the signal model in (1).

-12-



Using (1), (2) can be written as

V

yH t
t HF v

(3) yx + +

t t

~t+N HF Nv
t+N

and Vt

(4) Y =-

yt7a

H v
HF --

x +
t-N-a

HFN t-a

Assuming a > 1 is chosen large enough so that V tand

V -- are uncorrelated, and assuming that (v ) is a zero-mean

process, we obtain

H
HF

(5) E(Y Y ) . Exx1
t t-N-a *N Ext xt-N-a N

HF

-__

N

_-13-



If
T

P = E{xt xt ; t = 0, 1,...,

then,
T N+a

E(x x ) = F P ; t-N-a > 0.t t-N-o tNa-

Thus,
T t t-N-a T

E(YtYtN-a) = nNF P0 (FT) a = KN; t-N-a > 0.

It is straightforward to see that the outputs produced by a

system of the form

x = Fx ,t+l t

n
yt = Hx ; x E R , t > 0,t t 0

satisfies a difference equation (i.e., has an Autoregressive (AR)

model)

ryt ot-r r,

n
for every x E R , if and only if0

[A ,...,Ar ]0r = 0,

where A's are pxp matrices. Thus we obtaini

7. THEOREM.

If F is nonsingular (no zero eigenvalues), and P is nonsing-0

ular, then the AR models for (1) are characterized as solutions of

(7a) AK = 0,
N

or, equivalently,

T
K A = 0,

N

-14-



where

A = [A 0,..., A N].

It is clear that usually in system identification, we are not

interested in finding just any AR model, neither all of them. All

the AR models other then minimal ones will contain redundant modes

(eigenvalues of F in (6)), that do not, in fact, exist in the true

system that produces the data y ,...,y . The same is true for

the models (6), or (1). Assuming an irredundant state-space model

in (1), (F,H) is an observable pair. Then, it is well-known that

the minimal (irredundant) AR models are characterized via the

observability indices of (F,H).

Contrary to the usual assumption in most literature, for

multi-output systems, in the minimal AR models, A is not I . Fromr p

the results obtained above, and from the elementary realization

theory, it follows that a minimal AR model can be obtained by

finding the linear dependence relationships among the rows or the

columns of the matrix K . r is the largest observability index,N

and N must be chosen to be greater than or equal to the largest

observability index. This can be done exactly the same way

that canonical forms for a pair (F,G) or (H,F) are obtained (see,

e.g., [1], for a detailed exposition of this). This leads to

minimal AR representations of the form

Q(D)yt = 0; t > 0 1

where Q(D) is a pxp polynomial matrix

r r-1
Q(D) = A D + A D +. . .+A , r > N,

r r-i 0-

-15-



D being the advance operator. In particular, a minimal Q(D) can

be computed which is row proper with row degrees equal to the

observability indices, from which a minimal state-space

realization of the system producing the data y 0 y ' YM can be

easily obtained (see, e.g., [1]) by inspection of A 's. Clearly,i
N must be chosen to be greater than or equal to the largest

observability index. Once a minimal (F,H) is obtained as

described above (which is unique up to a nonsingular state-space

transformation), it is straightforward to compute P uniquely up0

to the particular state-space transformation, since al is leftN

invertible, and (by assumption) F has no zero eigenvalues.

Once F, H, P are determined, the autocorrelation function0

of v can be easily obtained from
t

Yt

yT T T
(7b) E yt+l [Y Iy T . y T I

t t+l t+a

yt+a

t TtT A

= 0 F P (F ) a + R ,U 0 U t

where

v
t

A • T T(8) R = E { . [v t  , . . . , v ] )
t t t+a

v
t+0

-16-



yields the autocorrelation function of (v t. (Note that the first

term in (7b) is known).

9. REMARK.

Note that contrary to most system identification techniques,

our technique, in particular, has no stationarity assumption on

the processes (y t} or (v t). In fact, in many situations, the

eigenvalues of F are exactly on the unit circle. This violates

the conditions for stationarity of (y t), even if (v t were assumed

to be a stationary process. The technique given above has no such

assumptions.

10. REMARK.

Here we did not assume any special structure on

1 T
R = E (vtvt

1
If we assume that i) R has the special diagonal structure witht

equal diagonal entries
1

R = diag (r ); r > 0,t 1 1-

and, ii) (v ) is a stationary white-noise process, then we can

directly consider

T T
(10a) Z: =E t+l [yt " t+N

Yt+N

t TtT 2
- O F P (F) 0 + R

N 0 N

-17-



2
Then R will be a diagonal matrix whose diagonal entries will be

the smallest eigenvalue of Z(= r ). From an eigenvalue-1

eigenvector decomposition of Z, we can then compute

1 t Tt TK : =0n FP P(F) 0N N 0 N

1
In this case, we can obtain P0' F and H from KN by the same

NN
procedure that was applied to KN , explained in this section.

Then, this special case becomes a generalization of the

well-known PISARENKO Harmonic Decomposition technique to the case

where the output of (1) is not necessarily assumed to be scalar.

11. REMARK.

It is clear that the above technique also applies to the case

where (F,H) may have complex numbers as their entries, and (v t),

{yt ) are complex valued. In this case, we only need to replace

"T" (transpose) with "*" (complex conjugate transpose) through-

out, and change the condition (7a) to

AK = 0,
N

or, equivalently,

K A* = 0

N

12. REMARK.

There is a special case where the technique developed here

can be simplified considerably. The reason why yt and Yt-N-a

are both considered is that for our technique, 0 must haveN

linearly independent columns. Suppose that the columns of H are

-18-



linearly independent. Then consider

T t
(12a) E (Ytyta = N F P (F*) H C N

Then, as F, P are nonsingular, and since the rows of H0

are linearly independent, one can obtain (H,F) and the minimal AR

representations of (1) via the left kernel of CN as explained in

this section. Next, P can be obtained from C In certain
0 N

cases, one is interested in finding a nonzero row vector a such

that
ayt = 0 ; t = 0, 1,

for all initial conditions. (See section 4). Clearly, this

corresponds to the condition

aH = 0.

Obviously, such a vector a can be obtained by computing a

nonzero vector a* which is in the right kernel of CN , i.e.,

C a* = 0.
N

If we are only interested in finding such a nulling vector,

it is enough to consider the right or left kernel of

1 T t t-a,
C : E(yy HF P (F*) HN t- 0  0

i.e.,

aH = 0

if and only if

1
aC = 0,

N

if and only if

H a = 0,

-19-



if and only if

1
C a* = 0.
N

3. NONPROBABILISTIC APPROACH

There are standard techniques of estimating P such as0

1 M t T Tt
(13) P P tF x x (F)

0 t=t 00

where pt is a weighting factor, and a is some constant. It is

clear that nonsingularity of P is equivalent to the reachability
0 2t

of the pair (Fy, x ) provided f i= for all t, where 7 is a

nonzero number, and M is larger than the order of F.

It is important to note that, as obvious from the results in

Section 2, provided that P in (13) is nonsingular, (F,H) and P0 0

can be obtained without having to use any probability theory

concepts. In this latter case, the autocorrelations and

covariances of all the quantities are their time-averages as in

(13). Thus, then the assumption on (v t) becomes that its time-

average autocorrelation function becomes exactly zero after some

finite time. Thus, everything described so far can be carried out

(with no approximation, as opposed to the Probabilistic Approach)

in terms of time-averages. Thus, the technique developed here is

perfectly applicable to many realistic situations where there is

usually no data available other than y 0y " " 1 . YMy

-20-



4. HARMONIC DECOMPOSITION FOR ARRAYS OF SENSORS

There is a substantial amount of literature on Harmonic

Decomposition oriented system identification techniques (see,

e.g., [2-3] and the references there). Among these, [2-3]

appear to us as among the representative generalizations of the

PISARENKO Harmonic Decomposition technique.

In this case, usually target returns are narrowband signals

with center frequencies wi' . . . ' . Then F has the form
1 n

F = diag (eJUiAt),

where At is the sampling interval. The matrix H in (1) now

corresponds to the measurements by an array of sensors. It has

the structure

1 1 . . . 1
w w . . . w

1 2 n

(14) H=

p-I p-l p-i
w w . . . w
1 2 n

where

w =ei i .i

r is the delay due to spacing of the sensors. We have assumedi

in (14) that the sensors are equally spaced. Clearly, our

techniques in Section 3 are applicable even if the sensors were

not placed with equal distances. The problem is to determine

both (w , . . . , ), and (7 , . . . ,I ). The first set

1 n 1 n

-21-



yields the Doppler frequencies. s's yield the angles of arri-1

vals. In this case the technique given in Remark 10 coincides

with the technique developed in [2] for the special case that (v)t

is assumed to be a stationary white-noise process. Clearly, the

primary technique developed in Sections 2 and 3 does not have this

assumption on {vt ).

A main difference between the technique in Remark 10, and

the one given in [2] is that, in [2] the target return signals are

assumed to be stationary zero-mean stochastic processes with a

positive definite covariance matrix. However, in many cases, the

return signals are, in fact, deterministic signals (sinusoidal

signals in the case of Radars, for example), with the only

uncertainty being at the initial state x . We exploit this fact0

in Remark 10. Thus, the technique in Remark 10 is a directly

applicable exact technique that can be used purely in terms of

exact time averages as opposed to the technique in [2] which has

to approximate probabilistic covariances via time averages,

introducing an additional approximation error. Also, we can

incorporate the uncertainty in signal magnitudes into x since0

F is diagonal. Thus the H matrix in (14) has a simpler

structure.

Another difference between the techniques in [2] and in

Remark 10 is that, in our case, the determination of the number of

targets is a problem of determining linear dependencies among the

rows (or columns) of a positive semidefinite matrix, whereas this

is approached in [2] as a hypothesis testing problem via a

likelihood-ratio.

-22-



In the technique developed in Section 2, the observability

of the pair (H,F) (linear independence of the columns of 0N ) is

possible via different r 's for sources with the same centeri

frequency, and these cannot exceed p. But the technique in

Section 2 (as well as the one in [2]) are applicable to the

situation of an arbitrary number of targets that can be larger

than p ( = number of sensors). For example, then, two sensors

would be enough for any number of targets.

Next, suppose that each target return signal has a different

frequency, and that p ( = number of sensors) is greater than

n = number of return signals. In this case the columns of H in

(14) will be linearly independent. Then, the simplified technique

in Remark (12) will yield (w , . . . ,w ) and (r , . . . ,r )1 n 1 n

in terms of the left and the right kernels of C as in Remark 12.
N

If all the incoming signals to the array are interference,

and if we want to find a row vector a such that

ayt = 0; t = 0, 1, . . . I

then any nonzero column vector in the right kernel of C willN

do as a*, as explained in Remark 12. Thus we can both null and

estimate interference sources using the left and right kernels of

C . If we do not want to estimate 's and r 's it is enough toN i i

consider only the right kernel of C . In fact, if we require
1

only output nulling, clearly we can only consider C as explainedN

in Remark 12. These latter cases constitute generalizations of

the techniques given in [3] even in this case as follows. Suppose

(H,F) is observable, but the columns of H are not linearly

independent. In this case, the row vectors a such that
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aH = 0

still coincide with the row vectors a such that

C a* = 0.
N

Thus, our technique still works even if the number of interference

signals are greater than or equal to the number of sensors as far

as (H,F) remains observable, contrary to the situation assumed in

[3]. We should also note that the technique in [3] is

probabilistic, and as such it introduces an approximation error in

estimating the probabilistic covariances via time averages,

whereas our techniques can be used directly via time-averages as

well if we define P as in (14), and they do not require this0

extra approximation, (see Section 3). Also, note that via our

development, the results obtained are still applicable even if

sensors are not equally spaced. In the case of equally spaced

sensors, the output (interference) nulling vectors a's have also

the following interpretation that has been missed in [3). If

(15) a= [ .,a ]
0 p-i

is a vector such that

* 1*
(16) C a = 0, or, C a = 0,N N

then, clearly

p-i
(17) a(W) a + w ++. a . + a w = 0.

1 0 i p-li
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Thus, if a(W) denotes the polynomial obtained from a vector a as

in (15-17), the roots of a greatest common divisor of all such

polynomials are w , . , w
1 p-1

17a. REMARK

A technique for finding this polynomial whose roots are

w ,..., w is as follows:
1 p-1

Let 72, ' . . , r} be a basis for the kernel of C
1 2 r N

1
or (equivalently, of C ). Then all vectors a in this subspaceN

are given by

r
X a

k=l k k

for some arbitrary ' " " " ' r e R (or C). Thus a greatest

common divisor of the polynomials 7 1(w), . . ., 7 (W)

obtained as described above from 7 , • . • , 7 is the desired
1 r

polynomial.

18. REMARK.

It is well-known that MUSIC is the spatial dual of the

PISARENKO technique. Thus our results can be similarly dualized

to obtain spatial generalizations of MUSIC.
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5. VIBRATIONS IN FLEXIBLE STRUCTURES

In what follows, first we establish an analogy between an

array of sensors receiving target return signals after delays, and

the vibrations occurring in a flexible structure. For example,

consider two types of flexible structures;

2 2
a u(t,x) 2 a u(t,x)

(19) = c (elastic string),
2 2

at ax

or,

2 4
a v(t,x) 2 a v(t,x)

(20) = c (rod).
2 4

at ax

We can approach the rod problem (20) first considering

2
a v(t,x)

u(t,x): =
2

ax

This transforms the situation (20) to the wave equation situation

(19). Thus we will concentrate on the wave equation (19).

It is well known that the general solution of (19) can be

written as

x x
u(t,x) = f(t - - ) + g(t + - )

c c
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which represents two waves f(t) and g(t) traveling in opposite

directions along the string with speed c. The functions f and g

are determined via the boundary and the initial conditions. For

simplicity, let us consider a semi-infinite string. In this case

x
u(t,x) = f(t -- )

C

which is a wave f(t) traveling in one direction. The case where g

also exists can also be approached similarly. But for simplicity

of exposition of the ideas here, we assume g = 0. A more general

traveling wave approach for more complicated structures can be

found, e.g., in [5].

The function f(t) which represents the oscillations at x = 0

is a sum of sinusoids (infinitely many)

f(t) = [ A ejl k t .

k=l k

Now we have a situation quite analogous to the case of an array of

sensors receiving f(t) as a signal emitted by targets after a

certain delay each. This analogy can now be exploited to place

the sensors on a vibrating structure in certain ways that makes

the problem of estimating the vibration modes much easier.

To explain this, first consider a single sinusoid

jWt
s(t) = Ae ; t e R.

Suppose that we place sensors at equally spaced points along

the string, where d > 0 is the distance between the sensors

(although our techniques in Sections 2 and 3 are still applicable

for arbitrary number of sensors spaced arbitrarily).
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Then each sensor measures
d

jw (t-r-)
y (t) = Ae C + v (t); t e R; 0 < r < p,

r r
where v (t) is the measurement noise.

r
Thus, we have

y 0(kAt)

(21) yk

y (kAt)
p

ljrw

ej2,
e jwkAt

A e + v(kAt)

Sj (p-l). W
e

where
d

r =- ; k = 0, 1, 2,...,
c

and At is the sampling interval. Suppose that there are n domi-

nant modes w. 's that we want to identify, and the unmodeled modes

contribute negligibly. Then we have

x = Fxt,
t+l t

where F describes the dominant modes of vibrations, and

1 1 .... 1
w w w

1 2 n

yt =  . . x + vt t t
p-i p-i p-I
w w w noise

1 2 n

=Hx + v ; t= 0, 1, 2,...,
t t
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where
w = e wi t

v = v(kAt); k = 0, 1, 2,....
k

Thus, now we have a simpler system identification problem where H

has a nice structure as in Section 4. Clearly, F, H can be found

via the system identification techniques developed here. In fact,
d

in this case r = - is known. Thus if we place more sensors thanc

the number of dominant modes, the much simpler technique given in

Remark 12 (specialized in Section 4) can be utilized to estimate
1

I's, via kernel of C I or CN.

The case where there is damping of the modes of vibrations

can be very similarly solved via these techniques. One can pursue

the analogy we have established further. There are alternatives

to placing p different sensors as described above. One can

consider placing a moving sensor along the x-axis, and effectively

achieve the same result. This is similar to the idea of a

Synthetic Aperture Radar (SAR). Note that in the case of flexible

structures, the problem is simpler because no angle of arrival

estimation is needed.

22. REMARK

The analogy with array of sensors we described above leads to

some other results for flexible structures. For example, suppose

we weigh the output of each sensor via a and add them. Then wek

obtain the response to an incoming wave of frequency w as

N-1
y(t) = A* a y (t)

k=o k k
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dN-I -jk-' jwt

= A-( N a e c ) e + v(t)
k=0 k

jct
= A-H(w)e + H(w)v(t).

Suppose, for example that, to prevent spillover (see e.g.,

[4]), we choose a 's in such a way that H(w) is a low passk

finite impulse response filter whose passband includes the highest

dominant frequency of vibration.

Thus, the spillover problem [4] due to high frequency

unmodeled modes would be eliminated.
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